УДК 620.22:678.6

СМЕСИ ПЭТ И ПОЛИЭТИЛЕНТЕРЕФТАЛАТГЛИКОЛЯ: ОСОБЕННОСТИ СТРУКТУРЫ, СОВМЕСТИМОСТЬ КОМПОНЕНТОВ, МЕХАНИЧЕСКИЕ И РЕОЛОГИЧЕСКИЕ СВОЙСТВА

С. С. СТРОГОНОВА¹, В. Н. КОВАЛЬ²⁺, В. В. ШЕВЧЕНКО², Л. А. ЩЕРБИНА³, С. С. ПЕСЕЦКИЙ²

¹ ОАО «Могилевхимволокно», 220035, г. Могилев, Беларусь

² ГНУ «Институт механики металлополимерных систем имени В.А. Белого НАН Беларуси», отдел технологии полимерных композитов, ул. Кирова, 32a, 246050, г. Гомель, Беларусь

³ УО «Могилевский государственный университет продовольствия», кафедра химической технологии высокомолекулярных соединений, пр-т Шмидта, 3, 212027, г. Могилев, Беларусь

Выполнен анализ совместимости компонентов в смесях кристаллизующегося ПЭТ и аморфного полиэтилентерефталатгликоля (ПЭТ-Г), а также приведены сведения о структуре, релаксационным и механическим свойствам смесевых материалов ПЭТ/ПЭТ-Г с различным соотношением компонентов, данные о реологическом поведении их расплавов. Исследования выполнены параллельно для двух типов смесей: бинарных и дополнительно содержащих 0,9 мас.% диизоцианатного удлинителя цепи (УЦ). Расчетным путем и экспериментально (по данным релаксационной спектрометрии) подтверждена совместимость ПЭТ и ПЭТ-Г в смесях. При концентрации ПЭТ-Г в смесях >70 мас.% кристаллизация ПЭТ в смесях может полностью подавляться. Добавки УЦ дополнительно замедляют кристаллизацию и способствуют аморфизации ПЭТ при пониженной концентрации ПЭТ-Г в смесях. Их введение способствует улучшению совместимости компонентов, повышению вязкости расплавов смесей и механической прочности смесевых материалов.

Ключевые слова: полиэтилентерефталат, полиэтилентерефталатгликоль, смесь полиэфиров, реакционная экструзия, удлинитель цепи.

Введение

Относительно новый тип насыщенного полиэфира, находящий все большее практическое применение ПЭТ-Г, благодаря сочетанию в структуре макромолекул ароматических, алифатических и циклоалифатических фрагментов обладает комплексом уникальных свойств [1–3]. В связи с нерегулярностью молекулярного строения и кинетическими ограничениями он практически не кристаллизуется при охлаждении из расплава и, вследствие этого, сохраняется его прозрачность в сравнительно толстых листовых заготовках или блочных изделиях. Поэтому он может использоваться при получении оптически прозрачных листовых и пленочных материалов, деталей, формуемых экструзией или литьем под давлением.

Особенно большие перспективы применения ПЭТ-Г связываются с изготовлением из него разнообразных листов светотехнического назначения, которые могут легко термоформоваться в интервале температур 120–150 °С, что ниже температур термовакуумформования поликарбоната. Повышенная стойкость листов из ПЭТ-Г к УФ-излучению, другим атмосферным факторам, высокая ударная вязкость, стойкость к растрескиванию под действием углеводородных растворителей, низкое водопоглощение, физиологическая инертность, возможность применения в пищевой и медицинской промышленности предопределяют его использование в качестве упаковочной контейнерной тары, различного рода дисплеев, пластиковых карт, витрин, ограждений в антивандальных сооружениях и конструкциях, где возможен контакт с человеком.

ПЭТ-Г, выпускаемый в промышленном масштабе, содержит в структуре макромолекул 30– 35 мольн.% связанного циклогександиметанола-1,4 (ЦГДМ-1,4), представляющего собой смесь транси цис-изомеров в соотношении 70/30 [3]. ЦГДМ-1,4 получают каталитическим гидрированием диметилтерефталата, используемого в качестве сомономера при двухстадийном синтезе серийных модификаций ПЭТ. В связи с необходимостью дополнительного синтеза ЦГДМ-1,4 получаемый при

⁺ — Автор, с которым следует вести переписку. E-mail: koval_mpri@tut.by

его использовании ПЭТ-Г по стоимости существенно превышает традиционные модификации ПЭТ.

Учитывая близость химических структур макромолекул ПЭТ и ПЭТ-Г, следует ожидать, что при их смешении в расплаве могут быть получены смесевые материалы с удовлетворительной совместимостью полиэфирных компонентов, в которых молекулярная подвижность ПЭТ будет ограничена ПЭТ-Г, что затруднит его кристаллизацию из расплава и позволит получить аморфизированные смесевые материалы. Известно также, что отдельные би- или полифункциональные низкомолекулярные реагенты, будучи введенными в расплав ПЭТ, активно взаимодействуют преимущественно с концевыми -ОН или >СООН группами ПЭТ, приводя к удлинению его цепей и, возможно, межмолекулярному сшиванию, что вызывает рост молекулярной массы (ММ), межцепных взаимодействий и ограничивает подвижность фрагментов макроцепей [4-6].

В связи с этим, представлялось важным подробно изучить влияние соотношения полиэфирных компонентов в смесях ПЭТ/ПЭТ-Г, а также добавок УЦ на особенности структуры и комплекс технологических и технических показателей, характеризующих эксплуатационные свойства материалов.

Цель работы – изучение влияния состава полиэфирных смесей при варьировании соотношения ПЭТ и ПЭТ-Г во всем диапазоне концентраций, а также добавок УЦ изоцианатного типа, являющихся весьма эффективными при их введении в ПЭТ и многофункциональные композиты на его основе [6], на совместимость компонентов, структуру, реологические и механические характеристики материалов.

Экспериментальная часть

Материалы. В экспериментах использовали относительно медленно кристаллизующийся ПЭТ марки 8200, произведенный ОАО «Могилевхимволокно» (ТУ РБ 03301552.001-95, характеристическая вязкость в дихлоруксусной кислоте $[\eta] = 0,784$ дл/г, концентрация концевых карбоксильных групп 50,4 ммоль/кг, температура плавления T_{пл} = 255 °C, температура кристаллизации Т_{кр} = 187 °С, температура стеклования T_c = 82 °C, расчетное значение параметра растворимости (б), определенное по значениям плотности энергии когезии [7], составляет 20,88 (Дж·см⁻³)^{0,5}, ММ = 27000), а также гранулят аморфного ПЭТ-Г, промышленно выпускаемый фирмой SK Chemicals (Ю. Корея), имеющий плотность 1,27 г/см³, водопоглощение за 24 ч при 23 °С, равное 0,13 %, T_c = 84 °C расчетную величину $\delta = 19,93 \; (Дж \cdot см^{-3})^{0,5}$ и ММ=28000 (по данным производителя).

Параметр растворимости для смесей полиэфиров определяли по формуле [7]:

$$\delta_{\rm CM} = \sqrt{\frac{\alpha_{\rm figt} \left(\sum_{i} \Delta E_{i}\right)_{\rm figt} + \left(l - \alpha_{\rm figt} \left(\sum_{i} \Delta E_{i}\right)_{\rm figt-\Gamma}\right)}{Na \left[\alpha_{\rm figt} \left(\sum_{i} \Delta V_{i}\right)_{\rm figt} + \left(l - \alpha_{\rm figt} \left(\sum_{i} \Delta V_{i}\right)_{\rm figt-\Gamma}\right)}, \quad (1)$$

где ΔE_i – вклад каждого атома и типа межмолекулярного взаимодействия в величину мольной энергии когезии i-го компонента, Na – число Авагадро, $\sum \Delta V_i$ – ван-дер-ваальсов объем элементарного звена макромолекулы, складывающийся из объемов атомов ΔV_i ; значения $\sum E_i$ и ΔV_i – табличные величины [7], $\alpha_{\Pi \Im T}$ – мольная доля ПЭТ в смесевом композите.

Расчетные значения δ использовали для теоретической оценки совместимости компонентов в полиэфирных смесях. Согласно теории Флори-Хаггинса предсказать совместимость двух полимеров можно на основании анализа значений термодинамического параметра взаимодействия (χ_{12}) [8]. Уравнение для оценки параметра взаимодействия χ_{12} между полимерами 1 и 2 записывается через параметры растворимости каждого полимера следующим образом [9]:

$$\chi_{12} = \frac{\mathrm{Vr}}{\mathrm{RT}} \left(\delta_1 - \delta_2 \right)^2, \tag{2}$$

где V_r – сравнительный мольный объём ($V_r = 10^{-4} M^3/MOJE$); δ_1 и δ_2 – параметры растворимости компонентов смеси; R – универсальная газовая постоянная; T – температура (принимается обычно T = 300 K).

Согласно данному подходу, совместимость полимеров имеет место, когда параметр взаимодействия близок к нулю. Критическая величина параметра χ_{12} ($\chi_{12 \text{ kp}}$), которая ограничивает верхний предел растворимости, определяется из соотношения [9]:

$$\chi_{\kappa p} = \frac{1}{2} \cdot \frac{[1/N_1^{1/2} + 1/N_2^{1/2}]^2}{(3)},$$

где N_1 и N_2 – степени полимеризации компонентов 1 и 2 (при этом точность расчёта параметров растворимости должна быть не менее, чем 0,1 (Дж/см³)^{0,5}).

УЦ служил жидкофазный диизоцианатный продукт марки МГТ-Ж (ТУ ВУ 400084698.265-2014), представляющий собой полимерный МДИ – смесь дифенилметан-4,4'-диизоцианата с его изомерами и гомологами; соотношение чистого и полимерного МДИ около 50 % (здесь и далее концентрация выражена в мас. %). Кроме того, в состав МГТ-Ж входил смесевой стабилизатор термоокислительной деструкции насыщенных полиэфиров марки В-561 производства ф. "BASF", ФРГ (смесь термостабилизатора Irgafos 168 и антиоксиданта Irganox 1010 при их массовом соотношении 4:1).

Получение материалов и экспериментальных образцов. Технология компаундирования материалов состояла в следующем. Вначале приготавливали механическую смесь предварительно высушенных в вакууме до остаточной влажности не более 0,05 % гранулятов полиэфирных компонентов. Затем, в зависимости от состава (табл. 1), в нее вводили жидкофазный УЦ и тщательно перемешивали компоненты в высокоскоростном двухлопастном смесителе. Далее полученную смесь подвергали компаундированию на экструзионно-грануляционной линии на базе двухшнекового экструдера TSSK-35/40 с односторонним вращением шнеков (производство КНР, диаметр шнеков 35 мм, L/D = 40, 10 секций материального цилиндра с независимым нагревом и точным поддержанием температуры в отдельных секциях).

N₂	Компоненты, %						
п/п	ПЭТ	ПЭТ-Г	УЦ	B-561			
Ι	99,7	-	-	0,3			
Π	98,8	_	0,9	0,3			
III	-	99,7	-	0,3			
IV	-	98,8	0,9	0,3			
V	92,3	7,5	-	0,3			
VI	84,7	15,0	-	0,3			
VII	74,7	25,0	-	0,3			
VIII	49,7	50,0	-	0,3			
IX	29,7	70,0	-	0,3			
Х	24,7	75,0	-	0,3			
XI	19,7	80,0	Ι	0,3			
XII	14,7	85,0		0,3			
XIII	91,4	7,5	0,9	0,3			
XIV	83,8	15,0	0,9	0,3			
XV	73,8	25,0	0,9	0,3			
XVI	48,8	50,0	0,9	0,3			
XVII	28,8	70,0	0,9	0,3			
XVIII	23,8	75,0	0,9	0,3			
XIX	18,8	80,0	0,9	0,3			
XX	13,8	85,0	0,9	0,3			

В серии выполненных экспериментов температурные режимы работы материального цилиндра экструдера при компаундировании материалов были идентичными (температура в основных смесительных секциях IV–VIII материального цилиндра была постоянной и составляла 270 °С). Частоту вращения шнеков принимали равной 350 об/мин. Длительность пребывания полимерного расплава в материальном цилиндре при этом была равной ≈ 0,5 мин.

После прохождения материального цилиндра экструдера расплав выдавливался из него через фильеру в виде 4-х стренг, которые подвергались водяному охлаждению и гранулированию. Далее полученный гранулят высушивали в вакууме до остаточной влажности ≤0,05 % и использовали для анализа показателя текучести (ПТР), а также вязкости расплава и получения экспериментальных образцов литьем под давлением на термопластавтомате EN-30 (производство Тайвань, объем впрыска 30 см³). Температура литья составляла 265 °С.

Методы испытаний. Показатели механических свойств определяли при испытаниях методами растяжения и ударного нагружения. Экспериментальные образцы представляли собой лопатки (тип 2, размер рабочей части 50х10х4 мм) – для испытаний методом растяжения (ГОСТ 11262-80), а также бруски размером 80х10х4 мм – для структурных исследований. Испытания при растяжении производили на машине Instron 5657 (Великобритания).

Реологическое поведение расплавов анализируемых материалов оценивали по значениям ПТР и вязкости (η), определяемым на приборе 5MPCA ф. RAY-RAN TEST EQUIPMENT Ltd (Великобритания) в соответствии с ГОСТ 11645, главным образом, при температуре 275 °C и нагрузке 21,6 H (диаметр капилляра 2,095 мм, длительность выдержки расплава в плавильном цилиндре прибора 4 мин).

Исследования методом релаксационной спектрометрии (PC) проводили с использованием образцов в виде пластин размером $50\times4\times1$ мм. Их изготавливали на лабораторной литьевой машине поршневого типа с объемом впрыска 5 см³ при температуре расплава 265 °С и температуре формующих элементов формы равной 40 °С. Динамические механические (релаксационные) свойства материалов изучали на основании анализа температурных зависимостей тангенса угла механических потерь (tgδ) и динамического модуля сдвига (G') образцов. Испытания проводили при использовании обратного крутильного маятника конструкции ИММС НАН Беларуси при частоте 1 Гц; точность измерений температуры составляла $\pm 0,1$ °C, tgδ ± 3 %, G' ± 1 % [10].

Данные о температурных зависимостях G' отдельных полиэфиров и смесевых композитов на их основе использовали для расчета критерия zG₃, который определяли по методике, предложенной Перепечко И.И. [11], по формуле:

$$\mathbf{G'_{cM}} = \boldsymbol{\varphi}_1 \bullet \mathbf{G'}_1 + \boldsymbol{\varphi}_2 \bullet \mathbf{G'}_2 + \mathbf{z}\mathbf{G}_3, \qquad (4)$$

где ϕ_1 и ϕ_2 – объемные доли компонентов G'_{cm} , G'_1 , G'_2 – соответственно динамические модули сдвига смеси и исходных компонентов 1 и 2; z – функция, зависящая от соотношения компонентов в смеси, G_3 – параметр, учитывающий вклад взаимодействия между компонентами в величину динамического модуля упругости; zG_3 – критерий, учитывающий отклонения динамического модуля сдвига от аддитивных значений, или в нашем случае:

$$zG_3 = G'_{cM} - \varphi_{\Pi \ni T} \bullet G'_{\Pi \ni T} - \varphi_{\Pi \ni T-\Gamma} \bullet G'_{\Pi \ni T-\Gamma}$$
(5)

В соответствии с [11] критерий zG₃ может служить параметром, учитывающим взаимодействие между компонентами смеси. Его отрицательное значение свидетельствует о слабом взаимодействии между компонентами. Положительная величина – свидетельство сильных межфазных взаимодействий.

Метод дифференциальной сканирующей калориметрии (ДСК) использовали для анализа кристаллической структуры (переходов плавлениекристаллизация). В качестве пробы использовали центральные слои средней части выше упомянутых брусков. Исследования выполняли на приборе Diamond DSC (фирма «Perkin Elmer», США) при навеске ≈ 7 мг, скоростях нагрева и охлаждения в

токе азота 15 °С/мин.

Термогравиметрические исследования материалов осуществляли на синхронном термоанализаторе STA 449 F3Jupiter (фирма «NETZSCH-Gerätebau GmbH», Германия), совмещенном с ИК-Фурье спектрометром (BRUKER Optics), США в токе азота при скорости нагрева 10 °С/мин и навеске 150 мг в диапазоне температур 23–700 °С.

Результаты экспериментов и их обсуждение

Оценка термической стабильности материалов.

Поскольку переработка ПЭТ из расплава и формование изделий из него осуществляется при относительно высокой температуре (не ниже 260– 265 °C), а аморфный ПЭТ-Г может быть переработан из вязкотекучего состояния при существенно более низкой температуре (≈ 200–230 °C), то представлялось важным оценить термостабильность смесей ПЭТ/ПЭТ-Г. Полученная, при этом информация может использоваться для оптимизации тепловых режимов переработки смесевых материалов.

На рис. 1 представлены типичные термогравиметрические кривые исходных полиэфиров и их смесевых композитов при примерно равном соотношении полиэфирных компонентов без добавок и с добавкой 0,9 мас. % УЦ, а в табл. 2 – данные о численных значениях потерь массы полиэфирных материалов при их нагреве.

Видно, что ПЭТ обладает несколько повышенной термостабильностью по сравнению с ПЭТ-Г (значения $T_{1\%}$ составляют соответственно 351,8 °C и 348,0 °C, табл. 2). Однако очевидно, что интенсивная деструкция макромолекул обоих полиэфиров начинается при температуре почти на 100 °C превышающей температуру плавления ПЭТ. При смешении ПЭТ и ПЭТ-Г не следует опасаться негативных последствий недостаточной термостабильности смесей (табл. 2, рис. 1, составы VIII и XVI). Данный факт предопределяет технологическую пригодность смесевых материалов для их переработки из расплава при температуре, превышающей температуру плавления ПЭТ ($T_{n\pi \Pi \Im T}$).

Рисунок 1 – Масса остатка (ΔM) при динамическом нагреве полиэфирных материалов; обозначения кривых здесь и на рис. 2, 3, 5–7 – составы согласно табл. 1

Таблица 2 – Г	езультаты термогравиметрического	анализа
	полиэфирных материалов	

Состав материала	Температура, °С, соответствующая потере массы:					
согласно таол.1	1 %	5 %	10 %	80 %		
I	351,8	376,6	386,7	673,2		
II	347,6	375,0	384,5	699,6		
III	348,0	369,9	377,6	414,9		
IV	348,9	370,2	377,6	416,6		
VIII	346,0	372,7	382,5	431,3		
XVI	299,7	369,7	379,0	427,2		

Введение в состав исходных и смесевых материалов добавки УЦ не приводит к заметному снижению их термостабильности.

Кристаллизация ПЭТ в полиэфирных смесях по данным ДСК.

Результаты анализа материалов методом ДСК представлены на рис. 2 и в табл. 3. Из них видно, вопервых, что исходный ПЭТ при нагреве в изме-

Рисунок 2 - Кривые ДСК при нагреве (а) и охлаждении (б) полиэфирных материалов

Обозначение состава	Холодная кристаллизация		Плавление		Кристаллизация из расплава		Степень кри-
согласно табл.1	Т _{х кр} , °С	ΔH _{х кр} , Дж/г	Т _{пл} , ⁰С	ΔН _{пл} , Дж/г	т _{кр} , °С	ΔН _{кр} , Дж/г	сталличности, α*, %
Ι	128,00	21,40	247,20	43,20	194,10	38,90	15,56
II	131,10	21,60	246,60	33,30	183,70	28,10	8,35
III	-	-	-	-	-	-	-
IV	-	-	-	-	-	-	-
V	131,7	20,8	242,1	34,6	185,3	32,5	9,9
VI	127,7	18,5	246,9	35,6	182,1	30,5	12,2
VII	135,8	22,7	241,7	33,1	173,6	28,8	7,4
VIII	145,4	18,7	237,4	21,3	-	-	1,86
IX			223,7	2,30	-	-	-
Х	162,2	7,1	229,4	7,1	-	-	-
XI	-	-	220,6	-	-	-	-
XII	-	-	222,9	-	-	-	-
XIII	133,6	19,7	243,9	27,0	174,4	24,8	5,2
XIV	141,1	15,2	235,7	18,6	-	-	2,4
XV	143,9	18,7	237,8	21,7	-	-	2,3
XVI	-	-	218,2	2,3	-	-	-
XVII	-	-	-	-	-	-	-
XVIII	-	_	-	-	-	_	-
XIX	-	-	-	-	-	-	-
XX	-	_	_	_	-	_	_

Таблица 3 – Значения параметров, характеризующих плавление и кристаллизацию полиэфиров (данные ДСК)

*α = (ΔΗпл – ΔΗх кр)·100/(k•ΔΗ⁰пл),где ΔΗ⁰пл = 144.664 Дж/г, удельная теплота плавления ПЭТ со 100%-ной степенью кристалличностью, k – концентрация ПЭТ в материале [12].

рительной ячейке микрокалориметра подвержен холодной кристаллизации (кристаллизации в твердом состоянии при температуре превышающей температуру стеклования ПЭТ, $T_{c\,\Pi \exists T}$), табл. 3, состав I. Значение его $T_{x \ \kappa p} = 128 \ ^{\circ}$ С. Кристаллизация ПЭТ из расплава в условиях эксперимента (скорость охлаждения 15 $^{\circ}$ С/мин) с максимальной скоростью протекает при $T_{\kappa p} = 194,1 \ ^{\circ}$ С. Степень кристалличности (α) при этом составляет 15,6 %. Введение в ПЭТ добавки УЦ замедляет кристаллизационные процессы в полиэфире: значения $T_{x \ \kappa p}$ повышаются до 131,1 $^{\circ}$ С, а $T_{\kappa p}$ снижается до 188,7 $^{\circ}$ С, почти в два раза уменьшается степень кристалличности ($\alpha = 8,4 \ ^{\circ}$).

Наличие кристаллической фазы в ПЭТ-Г методом ДСК вообще не фиксируется (табл. 3, составы III, IV).

В смеси ПЭТ/ПЭТ-Г с примерно равным соотношением компонентов (табл. 3, составы VIII и XVI) ПЭТ частично закристаллизован, причем его холодная кристаллизация в составе VIII без УЦ фиксируется при T = 144 °C, что на 17,4 °C превышает таковую для исходного полиэфира. При введении УЦ (табл. 3, состав XVI) холодная кристаллизация не происходит, а теплота плавления ΔH_{nn} снижается примерно в 10 раз, что является следствием резкого замедления кристаллизации ПЭТ в смесях с ПЭТ-Г, содержащих УЦ.

Важно также отметить, что в смесях с равным соотношением компонентов наблюдается снижение значений $T_{n\pi} \Pi$ эт по сравнению с исходным полиэфиром. При этом в смесях, включающих добавку УЦ (табл. 3, состав XVI), это снижение намного существеннее, чем без него (табл. 3, состав VIII) и состав-

ляет 29 °С. Данный факт может быть следствием пластифицирующего влияния аморфного ПЭТ-Г на ПЭТ.

В бинарных смесях ПЭТ/ПЭТ-Г с превалированием ПЭТ-Г (табл. 3, составы IX–XII) кристаллизация ПЭТ резко замедляется, хотя слабо выраженный пик плавления полиэфира при ≈220–230 °C проявляется вплоть до [ПЭТ-Г] = 85 % (табл. 3, состав XII).

Введение добавки УЦ в смеси ПЭТ/ПЭТ-Г приводит к полному подавлению кристаллизации ПЭТ при [ПЭТ-Г] \geq 70 % (табл. 3, составы XVII– XX). При [ПЭТ-Г] = 70 % в присутствии добавки УЦ в смеси ПЭТ также практически полностью аморфизирован (табл. 3, состав XVII). Таким образом, при введении УЦ в смеси ПЭТ/ПЭТ-Г при концентрации ПЭТ-Г \geq 70 % по данным ДСК наблюдается практически полная аморфизация кристаллизующегося ПЭТ. Добавка УЦ приводит к дополнительному замедлению кристаллизации ПЭТ в смесях и полностью подавляет кристаллизацию полиэфира при концентрации ПЭТ-Г в смеси равном 70 %.

Механические свойства и вязкость расплавов полиэфирных материалов.

В табл. 4 и на рис. 3, 4 приведены количественные данные по показателям важнейших механических свойств материалов. Как следует из табл. 4, ухудшение значений показателей механических свойств при смешении полиэфиров по сравнению с индивидуальными компонентами не происходит.

Напротив, по сравнению, по крайней мере с ПЭТ-Г, смеси независимо от соотношения компонентов обладают несколько повышенными

Обозначение состава соглас- но табл.1	σ _{тв} , МПа	σ _{тн} , МПа	ε _{τΒ} , %	ε _P , %	σ _{РИ} , МПа	ПТР, г/10 мин	η, Па∙с
Ι	55±3,1	23,9	14,4	120	55	35,3	302
II	56±3,0	24,8	14,4	413	167	12,2	872
III	51±2,8	26,9	14,8	82	39	9,5*	1117
IV	50±2,7	27,4	15,1	122	57	3,1*	3440
VII	56,4±3,4	23,7	16,7	313	232	40,0	266
VIII	56±3,3	25,4	15,5	63	36	34,2	312
Х	52±3,0	24,7	15,6	73	41	35,4	301
XV	54,7±3,0	26,4	15,7	552	254	12,8	817
XVI	58±3,4	30,6	15,3	90	54	12,1	884
XVIII	60±3,2	29,4	15,0	326	124	12,4	860

Таблица 4 – Показатели механических и реологических свойств полиэфирных материалов

Примечание: * – ПТР определен при T = 250 °C и P = 21,6 H; значение истинной прочности при растяжении рассчитано по формуле: $\sigma_{PH} = \sigma_P (1 + \epsilon_P)$

Рисунок 3 - Типичные деформационные кривые полиэфирных материалов

Рисунок 4 – Влияние концентрации ПЭТ-Г в смеси с ПЭТ на значения верхнего (σ_{TB}), нижнего (σ_{TH}) пределов текучести; 1 – бинарные смеси, 2 – смеси, модифицированные 0,9% УЦ

значениями верхнего предела текучести (σ_{TB}), определяющего предельно допустимые эксплуатационные нагрузки при растяжении, и существенно более высокими значениями нижнего предела текучести (σ_{TH}), уровень значений которого зависит от интенсивности межцепных взаимодействий [13] (табл. 4, рис. 3, 4). Характерно также, что независимо от типа полиэфирного материала при введении в его состав УЦ существенно повышается деформационная способность, характеризуемая значением относительного удлинения при разрыве (ϵ_P), что предопределяет резкое повышение истинной прочности (σ_{PH}) материалов при растяжении. Деформационное поведение исходных полиэфиров и их смесей до момента начала образования шейки примерно одинаково, что подтверждается близкими значениями є_{ТВ}, характеризующего величину относительной деформации при достижении максимума на зубе текучести (табл. 4). Характер разрушения образцов на конечной стадии деформирования существенно зависит от наличия УЦ в смесях: исходный ПЭТ и смеси с превалированием концентрации ПЭТ без добавок удлинителя цепи разрушаются при развитии сильных автоколебаний нагрузки (рис. 3 а, в), что, видимо, связано тепловой неустойчивостью роста шейки вследствие локального выделения тепла [13]. При введении добавок УЦ автоколебания при разрушении смесей исключаются. Автоколебания характерны и для исходного ПЭТ, модифицированного УЦ (рис. 3а, кривая II).

Добавка УЦ, вводимая в полиэфирные материалы в количестве 0,9 %, оказывает сильное влияние на текучесть (вязкость) расплава, снижая значения ПТР примерно в 3 раза. Причинами этого являются повышение ММ за счет реакций удлинения цепи, а также возможное образование межмолекулярных сшивок при взаимодействии макромолекул, в том числе разнородных полиэфиров с УЦ. На данный факт было указано, в частности, в работе [14] на примере анализа межфазных взаимодействий ПБТ с диизоцианатным УЦ. Вследствие повышенной вязкости расплава смесей ПЭТ/ПЭТ-Г/УЦ они обладают улучшенной технологиям и, в частности, при производстве листовых материалов.

Таким образом, при смешении ПЭТ с ПЭТ-Г в присутствии УЦ наблюдается их упрочнение при од-

новременном снижении кристалличности ПЭТ. Очевидно, что достижение данного эффекта возможно только вследствие интенсификации межмолекулярных взаимодействий как за счет роста ММ полиэфиров, так и за счет межцепных взаимодействий химической природы.

Анализ материалов методом РС.

Значения параметров, характеризующих релаксационные (динамические механические) свойства полиэфирных материалов, приведены в табл. 5, а типичные температурные зависимости tgб и G' – на рис. 5.

Как видно из рис. 5 (кривые 1), на температурной зависимости tg δ ПЭТ имеется три выраженных пика с максимумами при: T_β= -74 °C (β-процесс релаксации, характеризующий замораживание подвижности в фениленовых C₆H₄ фрагментах мономерных звеньев макромолекул полиэтилентерефталата) [15]; T_c= 82 °C – пик стеклования (замораживание сегментальной подвижности); T_{x кр}= 128 °C, возникающий вследствие протекания процесса хо-

Рисунок 5 – Температурные зависимости тангенса угла механических потерь (tg δ) и динамического модуля сдвига (G') для исходных полиэфиров – ПЭТ (a) и ПЭТ-Г (б), а также их смесей с 50% ПЭТ-Г без УЦ (в) и с добавкой 0,9% УЦ (г)

Обозначение состава	Τв.	T _c .	Т _{х кр} .	G'-60.	G'20.	G'110.	G'160.
согласно табл 1	°C	°Č	°C	MПа	MПа	MПа	MПа
согласно табл.т	C	C	C	Ivii ia	Ivii ia	Ivii ia	Ivii ia
Ι	-74,0	82,0	127,1	1240	955	52	120
II	-73,0	83,6	131,0	1425	1065	57	125
III	-73,0	84,0	-	1165	850	50	41
IV	-73,5	86,6	-	1125	820	58	55
VII	-73,0	83,5	140,0	1300	970	53	79
VIII	-73,4	83,4	148,2	1223	904	46	55
Х	-73,1	82,3		1160	835	44	46
XV	-72,0	82,7	144,0	1188	875	49	35
XVI	-72,2	82,9	152,9	1320	975	61	78
XVIII	-73,4	84,6	-	1140	832	49	60
XIX	-73,0	82,3	_	1197	859	47	46
XX	-72,5	84,9	_	1157	823	44	51

Таблица 5 – Показатели релаксационных свойств полиэфирных материалов

лодной кристаллизации в полиэфире [10]. Соответственно на температурной зависимости G' возникают перегибы вследствие снижения данного показателя при размораживании подвижности или его некоторый рост при кристаллизации макромолекул в области температур, близких к T_{x кр}.

Температурные зависимости показателей динамических механических свойств ПЭТ-Г (рис. 5, кривые III) в целом аналогичны таковым для ПЭТ за исключением того, что $T_{c\,\Pi \exists T-T} = 84$ °C (на 2 °C превышает $T_{c\,\Pi \exists T}$) и отсутствуют признаки, подтверждающие протекание холодной кристаллизации материала.

Добавка УЦ к полиэфирам в целом не изменяет характер релаксационных спектров. Для обоих полиэфиров происходит прирост (на 1,6– 2,6 °C) значений T_c , (табл. 5, составы II и IV) что может быть следствием ограничения сегментальной подвижности из-за интенсификации межмолекулярных взаимодействий в присутствии диизоцианатного УЦ. В результате этого, видимо, наблюдается также замедление холодной кристаллизации ПЭТ ($T_{x \ кp}$ на 4 °C смещается в область высоких температур).

Смеси ПЭТ/ПЭТ-Г независимо от наличия или отсутствия в их составе УЦ, а также их состава имеют единые температуры стеклования и β -процесса релаксации, что свидетельствует об удовлетворительной совместимости компонентов [14] на сегментальном уровне и уровне мономерных звеньев (табл. 5, рис. 5, кривые VIII, XVI). Значения Т $_{\beta}$ смесей близки к таковым для индивидуальных компонентов, а T_c находятся в промежутке между температурами стеклования отдельных компонентов, приближаясь к значениям $T_{c \Pi ЭТ-\Gamma}$ по мере увеличения [ПЭТ-Г] в смеси. Графические зависимости T_{β} и T_c полиэфиров в смесях в зависимости от состава приведены на рис. 6.

В отличие от ДСК методом РС холодная кристаллизация ПЭТ в бинарных смесях фиксируется вплоть до концентрации [ПЭТ-Г] = 80 % (табл. 5). Причиной этого является тот факт, что толщина образца, используемого для анализа методом РС, составляет 1 мм, что обеспечивает быстрое охлаждение расплава полиэфира в форме и его пониженную кристалличность. В экспериментах с использованием метода ДСК препарирование навесок для анализа осуществлялось из центральной части брусков толщиной 4 мм. Вследствие этого в образцах для ДСК анализа полиэфир был закристаллизован в большей степени, т.е. холодная кристаллизация на стадии формования образца протекала более полно и могла не фиксироваться данным методом.

При введении УЦ в состав смесей ПЭТ/ПЭТ-Г подавление холодной кристаллизации ПЭТ происходит при [ПЭТ-Г] = 70 % (табл. 5).

Таким образом, из данных PC, как и при анализе методом ДСК, следует, что добавка УЦ способствует замедлению кристаллизационных процессов в полиэфирных смесях и позволяет получить аморфизированный ПЭТ при [ПЭТ-Г] ≥ 70 %.

Определенный интерес представляет анализ влияния добавок УЦ на значения G' при разных температурах, как для индивидуальных полиэфиров, так и для их смесей с различной фазовой структурой. В табл. 5 приведены значения G' при температурах ниже T_c полиэфиров – T = -60 °C (G'. ₆₀), 20 °С (G'₂₀) и выше Т_с – при Т = 110 °С (G'₁₁₀ – до протекания процесса холодной кристаллизации ПЭТ), 160 °С (G'₁₆₀ - после протекания холодной кристаллизации в образце). Видно, что введение УЦ в кристаллизующийся ПЭТ приводит к повышению значений G' независимо от температуры испытаний. Для аморфного ПЭТ-Г эффект упрочнения наблюдается лишь в диапазоне температур выше Т_с, когда полимер находится в высокоэластическом состоянии. Следовательно, добавка диизоцианатного УЦ способствует интенсификации межмолекулярного взаимодействия в полиэфирах, в том числе за счет роста MM и межмолекулярных реакций, приводящих к частичному сшиванию макромолекул разнородных полиэфиров [13].

В смесях с примерно равными концентрациями полиэфирных компонентов (табл. 5, составы VIII, XVI), эффекты упрочнения близки к таковым для чистого ПЭТ, хотя G'₁₆₀ для смесевого композита, не содержащего УЦ, несколько ниже, чем для бинарной смеси полиэфиров, что обусловливается более высокой кристалличностью ПЭТ после протекания его холодной кристаллизации. В смесях с преобла-

Рисунок 6 – Зависимости значений температуры β-процесса релаксации (а) и стеклования (б) от концентрации ПЭТ-Г в полиэфирных смесях; 1 – бинарные смеси, 2 – смеси, модифицированные 0,9% УЦ

данием фазы ПЭТ-Г характер изменений G' при варьировании температуры примерно аналогичен таковому для данного исходного полиэфира как без добавок УЦ, так и при его наличии в полиэфире.

Результаты расчета значений критерия zG_3 по формуле (5), с использованием экспериментальных данных PC, приведенные на рис. 7, свидетельствуют о сильном влиянии температуры на межфазные взаимодействия в смесях независимо от соотношения компонентов.

В области температур ниже T_c полиэфиров, zG_3 имеет положительные значения, что свидетельствует об интенсивном межцепном взаимодействии. Затем при повышении температуры, при которой начинает размораживаться сегментальная подвижность наблюдается резкий спад величины критерия zG_3 . Величины $zG_3 < 0$, обычно характерные для смесей с низкой межфазной адгезией [16], приходятся на область значений температур выше T_c компонентов.

Рисунок 7 — Температурные зависимости значений критерия zG_3 для смесей ПЭТ/ПЭТ-Г-25%

Анализ совместимости компонентов в смесях.

Расчет значений параметров растворимости смесей полиэфиров (δ_{cm}) в зависимости от состава свидетельствует о том, что величина плавно изменяется при варьировании концентрации одного из компонентов (рис. 8). При этом величина δ_{cm} имеет близкие значения, находящиеся в промежутке между величинами параметра растворимости отдельных полиэфиров. Их разность составляет лишь 0,95 (Дж/см³)^{0,5}, что предопределяет возможность реализации термодинамической совместимости полиэфирных компонентов в их смесях (согласно [8] компоненты совместимы в их бинарных смесях при разности параметров растворимости не более 2 (Дж/см³)^{0,5}).

Расчет значений термодинамического параметра взаимодействия χ_{12} в смесях ПЭТ/ПЭТ-Г по формуле (2) свидетельствует о низкой величине (χ_{12} = 0,036), что потенциально предопределяет возможность реализации термодинамической совместимости (совместимость полимеров имеет место, когда параметр взаимодействия является близким к нулю [8]).

Рисунок 8 – Зависимость параметра растворимости от концентрации ПЭТ-Г в смеси с ПЭТ

Расчетная критическая величина параметра χ_{12} ($\chi_{12 \text{ кp}}$), которая ограничивает верхний предел растворимости [8], определенная по уравнению (3), равна 0,034. Следовательно, значения $\chi_{12} \approx \chi_{12 \text{ кp}}$, что подтверждает возможность реализации совместимости ПЭТ и ПЭТ-Г в их смесях.

Таким образом, установлена совместимость полиэфирных компонентов в смесях ПЭТ/ПЭТ-Г. При варьировании соотношения компонентов в смесях могут быть получены материалы с оптимальным балансом цены, реологических и механических свойств. В смесях ПЭТ/ПЭТ-Г с преобладанием ПЭТ-Г, содержащих изоцианатный удлинитель цепи, может происходить полное подавление кристаллизации ПЭТ. Концентрация ПЭТ-Г при этом должна быть не менее 70 %. Полученные смесевые материалы обладают комплексом улучшенных по сравнению с ПЭТ-Г технико-экономических показателей, что предопределяет широкие возможности их практического применения.

Выводы

Расчетным путем и экспериментально (на основании данных релаксационной спектрометрии) выполнен анализ совместимости компонентов в смесях кристаллизующегося ПЭТ и аморфного ПЭТ-Г при варьировании соотношения компонентов во всем интервале концентраций, а также при введении в материалы диизоцианатного УЦ. Показана возможность реализации совместимости компонентов в смесях независимо от их состава. Установлено снижение интенсивности межцепных взаимодействий при температуре, приходящейся на область стеклования полиэфирных компонентов, а также замедление кристаллизации ПЭТ в смесях. При концентрации ПЭТ-Г >70 мас. % кристаллизация ПЭТ в смесях может полностью подавляться. Добавка УЦ дополнительно замедляет кристаллизацию и способствует аморфизации ПЭТ при пониженной концентрации ПЭТ-Г в смесях. Введение УЦ способствует улучшению совместимости компонентов, повышению вязкости расплавов смесей и механической прочности смесевых материалов.

Обозначения

ММ - молекулярная масса; ПТР - показатель текучести расплава; ПЭТ-Г – полиэтилентерефталатгликоль; [ПЭТ-Г] – концентрация ПЭТ-Г в смеси; РС - релаксационная спектрометрия; УЦ - удлинитель цепи; ЦГДМ-1,4 – циклогександиметанол-1,4; G'- динамический модуль сдвига; L, D - соответственно длина и диаметр шнеков; Т – температура; $T_{\beta}, T_{c}, T_{x \, \kappa p}$ – соответственно температуры β -процесса релаксации, стеклования и холодной кристаллизации; tgδ – тангенс угла механических потерь; ΔМ – потери массы при ее динамическом нагреве в среде азота; б параметр растворимости; є_Р – прочность при растяжении и относительное удлинение при разрыве; єтвотносительное удлинение при верхнем пределе текучести; п – вязкость расплава; [n] – характеристическая вязкость раствора полимера в дихлоруксусной кислоте; отв, отн - соответственно верхний и нижний пределы текучести; ори – истинная прочность при растяжении; χ_{12} – термодинамический параметр взаимодействия; $\chi_{12 \text{ кр}}$ – критическое значение термодинамического параметра взаимодействия.

Литература

- Turner, S.R. Amorpous and crystalline polyesters based on 1,4cyclohexanedimethanol / S.R. Turner., R.W. Seymour, J.R. Dombroski // Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters / ed. J. Scheirs, T.E. Long – John Wiley & Sons, Ltd., 2003. – P. 267–292.
- Schiraldi, D.A. New poly(ethylene terephthalate) copolymers / D. A Shiraldi // Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters / ed. J. Scheirs, T.E. Long – John Wiley & Sons, Ltd., 2003. – P. 245–265.
- Шевлик, Н. В. Синтез и свойства аморфного светопрозрачного с-ПЭТ / Н. В. Шевлик, С.С. Строгонова, Л.Ю. Тычинская, В.Н. Коваль, Л.А. Щербина // Полимерные материалы и технологии. 2016. Т. 2, № 3. С. 35–46.
- Песецкий, С.С. Особенности структуры и свойств полиэтилентерефталата, содержащего добавки углеродных нанонаполнителей и удлинителя цепи / С.С. Песецкий,

С.А. Жданок, А.В. Крауклис, С.П. Богданович, И.Ф. Буяков, В.В. Голубович // Доклады НАН Беларуси – 2010. – Т. 54, № 6. – С. 105–110.

- Agabekov, V. Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly(ethylene terephthalate) / V. Agabekov, V. Golubovich, S. Pesetskii // JournalofNanomaterials. Special issue on Synthesis, Properties, and Applications of Polymeric Nanocomposites. – Vol. 2012. – No. 2012. – Article ID 870307 – P. 1–7.
- Pesetskii, S.S. Reactive compatibilization in technology of poly(alkylene terephthalate)-based composites: polyester blends, short fiber-filled materials, and nanocomposites / S.S. Pesetskii, V.V. Shevchenko, V.V. Dubrovsky // Multifunctionality of polymer Composites / ed. K. Friedrich, U. Breuer – Elsievier, Oxford, 2015. – Ch.9. – P. 302–337.
- Аскадский А.А., Матвеев Ю. И. Химическое строение и физические свойства полимеров. – М. Химия, 1983. – 247 с.
- 8. Кулезнев В.Н. Смеси полимеров. –М.: Химия. 1980. –304 с.
- Аскадский А.А. Один из возможных критериев оценки совместимости полимеров // Высокомолек. соед. –1999. – Серия А. – Т. 41, №1. – С.86–92.
- Песецкий, С.С. Холодная кристаллизация полиэтилентерефталата в смесях с полибутилентерефталатом, армированных стекловолокном / С. С. Песецкий, В. В. Дубровский, В.Н Коваль // Докл. НАН Беларуси. – 2011. – Т. 55, № 4. – С. 106–112.
- Перепечко, И.И. Вязкоупругое поведение и релаксационные процессы в смесях поликарбонат/полибутилентерефталат / И.И. Перепечко, В.А. Данилов, В.В. Нижегородов и др. // Высокомолекулярные соединения. 1993. Т. 35, № 2. С. 174–177.
- Pesetskii, S.S. PET/PC blends: effect of chain extender and impact strength modifier on their structure and properties / S.S. Pesetskii, B. Jurkowski, O.V. Filimonov, V.N. Koval, V.V. Golubovich // Journal of Applied Polymer Scienc. – 2011. – V. 119, iss. 1. – P. 225–234.
- Баженов, С.Л. Критерий появления механических автоколебаний при росте шейки в растягиваемой полимерной пленке / С.Л. Баженов, А.С. Качекьян // Высокомлекулярные соединения. – 2001. – Т. 43, № 1. – С. 63–72.
- Pesetskii, S.S. Effect of isocyanate chain extender on the structure and properties of the blends of poly(butylene terephthalate) and thermoplastic polyester elastomer / S.S. Pesetskii, V.V. Shevchenko, V.N. Koval // Thermoplastics Composite Materials. – Published online May 13, 2016, DOI: 10.1177/0892705716646419.
- Бартенев, Г.М. Релаксационная спектроскопия полимеров / Г. М. Бартенев, А. Б. Бартенева. – М.: Химия, 1992.
- Перепечко, И.И. Влияние взаимодействия между компонентами на динамические вязкоупругие свойства двухкомпонентных полимерных систем. Докл. АН СССР, 1986, Т. 291. С.147–149.

S.S. Strogonova, V.N. Koval, V.V. Shevchenko, L.A. Scherbina, S.S. Pesetskii Blends of pet and polyethylene terephthalate glycol: structure features, compatibility of components, mechanical and rheological properties

Analysis of compatibility of components in mixtures of crystallized polyethylene terephthalate (PET) and amorphous polyethylene terephthalate glycol (PET-G) is presented, also data on the structure, relaxation and mechanical properties of PET / PET-G mixed materials with different component ratios, data on rheological behavior of their melts are analyzed. The investigations were carried out in parallel for two types of blends: binary ones and additionally containing 0.9 wt % diisocyanate chain extender (CE). Analyzed materials were prepared by reactive blending in extrusion mixing reactor based on a co-rotating twin-screw extruder with screws' diameters of 35 mm and L/D = 40. The compatibility of PET and PET-G in blends was confirmed by calculation and experimentally by relaxation spectrometry. At a PET-G concentration in blends >70wt%, the crystallization of PET may be completely suppressed. CE additives further slow down crystallization and promote amorphization of PET at a reduced concentration of PET-G in the blends. Their addition improves the compatibility of the blends and the mechanical strength of the blende materials.

Keywords: polyethylene terephthalate, polyethylene terephthalate glycol, polyester blend, reactive extrusion, chain extender.

Поступила в редакцию 14.06.2017.

© С.С. Строгонова, В.Н. Коваль, В.В. Шевченко, Л.А. Щербина, С.С. Песецкий, 2017